Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
J Intensive Care Med ; : 8850666231217707, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629466

ABSTRACT

RATIONALE: Recent studies suggest that both hypo- and hyperinflammatory acute respiratory distress syndrome (ARDS) phenotypes characterize severe COVID-19-related pneumonia. The role of lung Severe Acute Respiratory Syndrome - Coronavirus 2 (SARS-CoV-2) viral load in contributing to these phenotypes remains unknown. OBJECTIVES: To redefine COVID-19 ARDS phenotypes when considering quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage of intubated patients. To compare the relevance of deep respiratory samples versus plasma in linking the immune response and the quantitative viral loads. METHODS: Eligible subjects were adults diagnosed with COVID-19 ARDS who required mechanical ventilation and underwent bronchoscopy. We recorded the immune response in the bronchoalveolar lavage and plasma and the quantitative SARS-CoV-2 RT-PCR in the bronchoalveolar lavage. Hierarchical clustering on principal components was applied separately on the 2 compartments' datasets. Baseline characteristics were compared between clusters. MEASUREMENTS AND RESULTS: Twenty subjects were enrolled between August 2020 and March 2021. Subjects underwent bronchoscopy on average 3.6 days after intubation. All subjects were treated with dexamethasone prior to bronchoscopy, 11 of 20 (55.6%) received remdesivir and 1 of 20 (5%) received tocilizumab. Adding viral load information to the classic 2-cluster model of ARDS revealed a new cluster characterized by hypoinflammatory responses and high viral load in 23.1% of the cohort. Hyperinflammatory ARDS was noted in 15.4% of subjects. Bronchoalveolar lavage clusters were more stable compared to plasma. CONCLUSIONS: We identified a unique group of critically ill subjects with COVID-19 ARDS who exhibit hypoinflammatory responses but high viral loads in the lower airways. These clusters may warrant different treatment approaches to improve clinical outcomes.

2.
Am J Transplant ; 2024 Mar 24.
Article in English | MEDLINE | ID: mdl-38531429

ABSTRACT

Lung transplantation (LTx) continues to have lower rates of long-term graft survival compared with other organs. Additionally, lung utilization rates from brain-dead donors remain substantially lower compared with other solid organs, despite a growing need for LTx and the significant risk of waitlist mortality. This study aims to examine the effects of using a combination of the recently described novel lung donor (LUNDON) acceptability score and the newly adopted recipient lung Composite Allocation Score (CAS) to guide transplantation. We performed a review of nearly 18 000 adult primary lung transplants from 2015-2022 across the US with retroactive calculations of the CAS value. The medium-CAS group (29.6-34.5) had superior 1-year posttransplant survival. Importantly, the combination of high-CAS (> 34.5) recipients with low LUNDON score (≤ 40) donors had the worst survival at 1 year compared with any other combination. Additionally, we constructed a model that predicts 1-year and 3-year survival using the LUNDON acceptability score and CAS values. These results suggest that caution should be exercised when using marginally acceptable donor lungs in high-priority recipients. The use of the LUNDON score with CAS value can potentially guide clinical decision-making for optimal donor-recipient matches for LTx.

3.
Am J Transplant ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38346500

ABSTRACT

Size-matching donors to recipients in lung transplantation continues to be a clinical challenge. Predicted total lung capacity equations, or more simply, donor and recipient heights, while widely used, are imprecise and may not be representative of the pool of donors and recipients. These inherent limitations may result in size discrepancies. The advent of easily accessible software and the widespread availability of computed tomography (CT) imaging in donor assessments have made it possible to directly measure lung volumes in donors and recipients. As a result, there is a growing interest in adopting personalized CT volumetry as an alternative. This article explores both methods and underscores the potential benefits and precision offered by CT.

4.
Am J Transplant ; 24(3): 458-467, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37468109

ABSTRACT

Primary graft dysfunction (PGD) is the leading cause of morbidity and mortality in the first 30 days after lung transplantation. Risk factors for the development of PGD include donor and recipient characteristics, but how multiple variables interact to impact the development of PGD and how clinicians should consider these in making decisions about donor acceptance remain unclear. This was a single-center retrospective cohort study to develop and evaluate machine learning pipelines to predict the development of PGD grade 3 within the first 72 hours of transplantation using donor and recipient variables that are known at the time of donor offer acceptance. Among 576 bilateral lung recipients, 173 (30%) developed PGD grade 3. The cohort underwent a 75% to 25% train-test split, and lasso regression was used to identify 11 variables for model development. A K-nearest neighbor's model showing the best calibration and performance with relatively small confidence intervals was selected as the final predictive model with an area under the receiver operating characteristics curve of 0.65. Machine learning models can predict the risk for development of PGD grade 3 based on data available at the time of donor offer acceptance. This may improve donor-recipient matching and donor utilization in the future.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Retrospective Studies , Primary Graft Dysfunction/diagnosis , Primary Graft Dysfunction/etiology , Lung Transplantation/adverse effects , Risk Factors , Lung
5.
Transplantation ; 108(3): 777-786, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37899481

ABSTRACT

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is the leading cause of death beyond the first year after lung transplantation. The development of donor-specific antibodies (DSA) is a recognized risk factor for CLAD. Based on experience in kidney transplantation, we hypothesized that belatacept, a selective T-cell costimulatory blocker, would reduce the incidence of DSA after lung transplantation, which may ameliorate the risk of CLAD. METHODS: We conducted a pilot randomized controlled trial (RCT) at 2 sites to assess the feasibility and inform the design of a large-scale RCT. All participants were treated with rabbit antithymocyte globulin for induction immunosuppression. Participants in the control arm were treated with tacrolimus, mycophenolate mofetil, and prednisone, and participants in the belatacept arm were treated with tacrolimus, belatacept, and prednisone through day 89 after transplant then converted to belatacept, mycophenolate mofetil, and prednisone for the remainder of year 1. RESULTS: After randomizing 27 participants, 3 in the belatacept arm died compared with none in the control arm. As a result, we stopped enrollment and treatment with belatacept, and all participants were treated with standard-of-care immunosuppression. Overall, 6 participants in the belatacept arm died compared with none in the control arm (log rank P = 0.008). We did not observe any differences in the incidence of DSA, acute cellular rejection, antibody-mediated rejection, CLAD, or infections between the 2 groups. CONCLUSIONS: We conclude that the investigational regimen used in this pilot RCT is associated with increased mortality after lung transplantation.


Subject(s)
Lung Transplantation , Tacrolimus , Humans , Abatacept/therapeutic use , Tacrolimus/adverse effects , Mycophenolic Acid/therapeutic use , Prednisone/therapeutic use , Pilot Projects , Immunosuppressive Agents/adverse effects , Immunosuppression Therapy , Antibodies , Lung Transplantation/adverse effects , Graft Rejection/prevention & control , Graft Rejection/etiology , Graft Survival
6.
Pulm Ther ; 9(4): 499-510, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37917322

ABSTRACT

INTRODUCTION: Awake prone positioning has the potential to improve oxygenation and decrease respiratory rate, potentially reducing the need for intubation in patients with acute hypoxemic respiratory failure. We investigated awake prone positioning-induced changes in oxygenation and respiratory rate, and the prognostic capacity for intubation in patients with COVID-19 pneumonia. METHODS: International multicenter prospective observation study in critically ill adult patients with COVID-19 receiving supplemental oxygen. We collected data on oxygenation and respiratory rate at baseline, and at 1 h after being placed in prone positioning. The combined primary outcome was oxygenation and respiratory rate at 1 h. The secondary endpoint was treatment failure, defined as need for intubation within 24 h of start of awake prone positioning. RESULTS: Between March 27th and November 2020, 101 patients were enrolled of which 99 were fully analyzable. Awake prone positioning lasted mean of 3 [2-4] h. In 77 patients (77.7%), awake prone positioning improved oxygenation, and in 37 patients (54.4%) it decreased respiratory rate. Twenty-nine patients (29.3%) were intubated within 24 h. An increase in SpO2/FiO2 of < 10 (OR 5.1, 95% CI 1.4-18.5, P = 0.01), a failure to increase PaO2/FiO2 to > 116 mmHg (OR 3.6, 95% CI 1.2-10.8, P = 0.02), and a decrease in respiratory rate of < 2 breaths/min (OR 3.6, 95% CI 1.3-9.5, P = 0.01) were independent variables associated with need for intubation. The AUC-ROC curve for intubation using a multivariable model was 0.73 (95% CI 0.62-0.84). CONCLUSIONS: Awake prone positioning improves oxygenation in the majority of patients, and decreases respiratory rate in more than half of patients with acute hypoxemic respiratory failure caused by COVID-19. One in three patients need intubation within 24 h. Awake prone position-induced changes in oxygenation and respiratory rate have prognostic capacity for intubation within 24 h.

7.
J Pharm Pract ; : 8971900231213699, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37923307

ABSTRACT

Background: The renin-angiotensin-aldosterone system (RAAS) is responsible for a multitude of physiological functions, including immunological effects such as promotion of TGF-ß and upregulation of IL-6 and IL-8 which are also implicated in the development of chronic lung allograft dysfunction (CLAD). Blockade of the RAAS pathway in pre-clinical models has demonstrated a decrease in these cytokines and pulmonary neutrophil recruitment. Objective: This study sought to evaluate whether use of RAAS inhibitor (RAASi) in lung transplant recipients impacted CLAD-free survival. Methods: In this retrospective, single-center study, 35 lung transplant recipients who received a RAASi post-transplant were compared to 70 lung transplant recipients not exposed to a RAASi and were followed for up to 5 years post-transplant. Results: The incidence of CLAD did not differ based on RAASi treatment (34.3% in RAASi vs 38.6%, P-value .668). This was confirmed with a multivariable Cox proportional hazards model with RAASi initiation as a time-varying covariate (RAASi hazard ratio of 1.01, P-value .986). Incidence of hyperkalemia and acute kidney injury were low in the RAASi group. Conclusions: This study demonstrated no association between post-transplant RAASi use and decreased risk of CLAD development. RAASi were also well tolerated in this patient population.

8.
J Heart Lung Transplant ; 42(10): 1353-1357, 2023 10.
Article in English | MEDLINE | ID: mdl-37268051

ABSTRACT

Tocilizumab (TCZ), an IL-6 inhibitor, has shown promise in the treatment of donor-specific antibodies (DSA) and chronic antibody-mediated rejection (AMR) in renal transplant recipients. However, its use in lung transplantation has not been described. This retrospective case-control study compared AMR treatments containing TCZ in 9 bilateral lung transplant recipients to 18 patients treated for AMR without TCZ. Treatment with TCZ resulted in more clearance of DSA, lower recurrence of DSA, lower incidence of new DSA, and lower rates of graft failure when compared to those treated for AMR without TCZ. The incidence of infusion reactions, elevation in transaminases, and infections were similar between the 2 groups. These data support a role for TCZ in pulmonary AMR and establish preliminary evidence to design a randomized controlled trial of IL-6 inhibition for the management of AMR.


Subject(s)
Kidney Transplantation , Lung Transplantation , Humans , Isoantibodies , Retrospective Studies , Case-Control Studies , Interleukin-6 , Kidney Transplantation/adverse effects , Graft Rejection , HLA Antigens
9.
Pathogens ; 12(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242364

ABSTRACT

Fungal infections are a significant source of morbidity in the lung transplant population via direct allograft damage and predisposing patients to the development of chronic lung allograft dysfunction. Prompt diagnosis and treatment are imperative to limit allograft damage. This review article discusses incidence, risk factors, and symptoms with a specific focus on diagnostic and treatment strategies in the lung transplant population for fungal infections caused by Aspergillus, Candida, Coccidioides, Histoplasma, Blastomyces, Scedosporium/Lomentospora, Fusarium, and Pneumocystis jirovecii. Evidence for the use of newer triazole and inhaled antifungals to treat isolated pulmonary fungal infections in lung transplant recipients is also discussed.

10.
Transplant Proc ; 55(2): 432-439, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36914438

ABSTRACT

BACKGROUND: Accumulated knowledge on the outcomes related to size mismatch in lung transplantation derives from predicted total lung capacity equations rather than individualized measurements of donors and recipients. The increasing availability of computed tomography (CT) makes it possible to measure the lung volumes of donors and recipients before transplantation. We hypothesize that CT-derived lung volumes predict a need for surgical graft reduction and primary graft dysfunction. METHODS: Donors from the local organ procurement organization and recipients from our hospital from 2012 to 2018 were included if their CT exams were available. The CT lung volumes and plethysmography total lung capacity were measured and compared with predicted total lung capacity using Bland Altman methods. We used logistic regression to predict the need for surgical graft reduction and ordinal logistic regression to stratify the risk for primary graft dysfunction. RESULTS: A total of 315 transplant candidates with 575 CT scans and 379 donors with 379 CT scans were included. The CT lung volumes closely approximated plethysmography lung volumes and differed from the predicted total lung capacity in transplant candidates. In donors, CT lung volumes systematically underestimated predicted total lung capacity. Ninety-four donors and recipients were matched and transplanted locally. Larger donor and smaller recipient lung volumes estimated by CT predicted a need for surgical graft reduction and were associated with higher primary graft dysfunction grade. CONCLUSION: The CT lung volumes predicted the need for surgical graft reduction and primary graft dysfunction grade. Adding CT-derived lung volumes to the donor-recipient matching process may improve recipients' outcomes.


Subject(s)
Lung Transplantation , Primary Graft Dysfunction , Humans , Lung , Lung Transplantation/adverse effects , Lung Transplantation/methods , Lung Volume Measurements/methods , Tomography, X-Ray Computed/methods , Tissue Donors , Retrospective Studies , Organ Size
11.
PLOS Glob Public Health ; 3(1): e0001500, 2023.
Article in English | MEDLINE | ID: mdl-36963064

ABSTRACT

Household air pollution from wood smoke (WS), contributes to adverse health effects in both low- and high-income countries. However, measurement of WS exposure has been limited to expensive in-home monitoring and lengthy face-to-face interviews. This paper reports on the development and testing of a novel, self-report nine-item measure of WS exposure, called the Household Exposure to Wood Smoke (HEWS). A sample of 149 individuals using household wood stoves for heating from western states in the U.S., completed the HEWS during the winter months (November to March) of 2013 through 2016 with 30 subjects having in-home particle monitoring. Hard copy or online surveys were completed. Cronbach's alpha (α), intraclass correlations (ICC), exploratory factor analysis (EFA) and tests of associations were done to evaluate reliability and validity of the HEWS. Based on initial analysis, only 9 of the 12 items were retained and entered in the EFA. The EFA did not support a unitary scale as the 9 items demonstrated a 3-factor solution (WS exposure duration, proximity, and intensity) with Cronbach's α of 0.79, 0.91, and 0.62, respectively. ICC was 0.86 of the combined items with single items ranging from 0.46 to 0.95. WS intensity was associated with symptoms and levoglucosan levels, while WS duration was associated with stove and flume maintenance. The three-dimensional HEWS demonstrated internal consistency and test-retest reliability, structural validity, and initial criterion and construct validity.

12.
Am J Transplant ; 23(4): 540-548, 2023 04.
Article in English | MEDLINE | ID: mdl-36764887

ABSTRACT

There is a chronic shortage of donor lungs for pulmonary transplantation due, in part, to low lung utilization rates in the United States. We performed a retrospective cohort study using data from the Scientific Registry of Transplant Recipients database (2006-2019) and developed the lung donor (LUNDON) acceptability score. A total of 83 219 brain-dead donors were included and were randomly divided into derivation (n = 58 314, 70%) and validation (n = 24 905, 30%) cohorts. The overall lung acceptance was 27.3% (n = 22 767). Donor factors associated with the lung acceptance were age, maximum creatinine, ratio of arterial partial pressure of oxygen to fraction of inspired oxygen, mechanism of death by asphyxiation or drowning, history of cigarette use (≥20 pack-years), history of myocardial infarction, chest x-ray appearance, bloodstream infection, and the occurrence of cardiac arrest after brain death. The prediction model had high discriminatory power (C statistic, 0.891; 95% confidence interval, 0.886-0.895) in the validation cohort. We developed a web-based, user-friendly tool (available at https://sites.wustl.edu/lundon) that provides the predicted probability of donor lung acceptance. LUNDON score was also associated with recipient survival in patients with high lung allocation scores. In conclusion, the multivariable LUNDON score uses readily available donor characteristics to reliably predict lung acceptability. Widespread adoption of this model may standardize lung donor evaluation and improve lung utilization rates.


Subject(s)
Lung Transplantation , Tissue and Organ Procurement , Humans , Young Adult , Adult , Retrospective Studies , Tissue Donors , Lung , Brain Death
13.
J Thorac Dis ; 14(4): 1042-1051, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35572863

ABSTRACT

Background: Errors in measuring chest X-ray (CXR) lung heights could contribute to the occurrence of size-mismatched lung transplant procedures. Methods: We first used Bland-Altman analysis for repeated measures to evaluate contributors to measurement error of chest X-ray lung height. We then applied error propagation theory to assess the impact of measurement error on size matching for lung transplantation. Results: A total 387 chest X-rays from twenty-five donors and twenty-five recipients were measured by two raters. Individual standard deviation for lung height differences were independent of age, sex, donor vs. recipient, diagnostic group and race/ethnicity and all were pooled for analysis. Bias between raters was 0.27 cm (±0.03) and 0.22 cm (±0.06) for the right and left lung respectively. Within subject variability was the biggest contributor to error in measurement, 2.76 cm (±0.06) and 2.78 cm (±0.2) for the right and left lung height. A height difference of 4.4 cm or more (95% CI: ±4.2, ±4.6 cm) between the donor and the recipient right lung height has to be accepted to ensure matching for at least 95% of patients with the same true lung height. This difference decreases to ±1.1 cm (95% CI: ±0.9, ±1.3 cm) when the average from all available chest X-rays is used. The probability of matching a donor and a recipient decreases with increasing true lung height difference. Conclusions: Individual chest X-ray lung heights are imprecise for the purpose of size matching in lung transplantation. Averaging chest X-rays lung heights reduced uncertainty.

15.
Am J Transplant ; 22(7): 1884-1892, 2022 07.
Article in English | MEDLINE | ID: mdl-35286760

ABSTRACT

The development of donor-specific antibodies (DSA) after lung transplantation is common and results in adverse outcomes. In kidney transplantation, Belatacept has been associated with a lower incidence of DSA, but experience with Belatacept in lung transplantation is limited. We conducted a two-center pilot randomized controlled trial of de novo immunosuppression with Belatacept after lung transplantation to assess the feasibility of conducting a pivotal trial. Twenty-seven participants were randomized to Control (Tacrolimus, Mycophenolate Mofetil, and prednisone, n = 14) or Belatacept-based immunosuppression (Tacrolimus, Belatacept, and prednisone until day 89 followed by Belatacept, Mycophenolate Mofetil, and prednisone, n = 13). All participants were treated with rabbit anti-thymocyte globulin for induction immunosuppression. We permanently stopped randomization and treatment with Belatacept after three participants in the Belatacept arm died compared to none in the Control arm. Subsequently, two additional participants in the Belatacept arm died for a total of five deaths compared to none in the Control arm (log rank p = .016). We did not detect a significant difference in DSA development, acute cellular rejection, or infection between the two groups. We conclude that the investigational regimen used in this study is associated with increased mortality after lung transplantation.


Subject(s)
Lung Transplantation , Tacrolimus , Abatacept/therapeutic use , Antilymphocyte Serum/therapeutic use , Graft Rejection/drug therapy , Graft Rejection/etiology , Graft Rejection/prevention & control , Graft Survival , Humans , Immunosuppression Therapy , Immunosuppressive Agents/therapeutic use , Lung Transplantation/adverse effects , Mycophenolic Acid/therapeutic use , Pilot Projects , Prednisone
16.
COPD ; 19(1): 61-68, 2022.
Article in English | MEDLINE | ID: mdl-35099333

ABSTRACT

Racial and ethnic disparities in chronic obstructive pulmonary disease (COPD) are not well-studied. Our objective was to examine differences in limited COPD-related outcomes between three minority groups-African Americans (AAs), Hispanics, and American Indians (AIs) versus non-Hispanic Whites (NHWs), as the referent group, in separate cohorts. Separate cross-sectional evaluations were performed of three US-based cohorts of subjects at risk for COPD: COPDGene Study with 6,884 NHW and 3,416 AA smokers; Lovelace Smokers' Cohort with 1,598 NHW and 378 Hispanic smokers; and Mining Dust Exposure in the United States Cohort with 2,115 NHW, 2,682 Hispanic, and 2,467 AI miners. Prebronchodilator spirometry tests were performed at baseline visits using standard criteria. The primary outcome was the prevalence of airflow obstruction. Secondary outcomes were self-reported physician diagnosis of COPD, chronic bronchitis, and modified Medical Research Council dyspnea score. All minority groups had a lower prevalence of airflow obstruction than NHWs (adjusted ORs varied from 0.29 in AIs to 0.85 in AAs; p < 0.01 for all analyses). AAs had a lower prevalence of chronic bronchitis than NHWs. In our study, all minority groups had a lower prevalence of airflow obstruction but a greater level of self-reported dyspnea than NHWs, and covariates did not explain this association. A better understanding of racial and ethnic differences in smoking-related and occupational airflow obstruction may improve prevention and therapeutic strategies.


Subject(s)
Bronchitis, Chronic , Pulmonary Disease, Chronic Obstructive , Cross-Sectional Studies , Dyspnea , Ethnic and Racial Minorities , Humans , Prevalence , United States/epidemiology
17.
J Immunol ; 207(5): 1229-1238, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34348975

ABSTRACT

Infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) or seasonal influenza may lead to respiratory failure requiring intubation and mechanical ventilation. The pathophysiology of this respiratory failure is attributed to local immune dysregulation, but how the immune response to viral infection in the lower airways of the human lung differs between individuals with respiratory failure and those without is not well understood. We used quantitative multiparameter flow cytometry and multiplex cytokine assays to evaluate matched blood and bronchoalveolar lavage (BAL) samples from control human subjects, subjects with symptomatic seasonal influenza who did not have respiratory failure, and subjects with severe seasonal influenza or SARS-CoV-2 infection with respiratory failure. We find that severe cases are associated with an influx of nonclassical monocytes, activated T cells, and plasmablast B cells into the lower airways. Cytokine concentrations were not elevated in the lower airways of moderate influenza patients compared with controls; however, 28 of 35 measured cytokines were significantly elevated in severe influenza, severe SARS-CoV-2 infection, or both. We noted the largest elevations in IL-6, IP-10, MCP-1, and IL-8. IL-1 family cytokines and RANTES were higher in severe influenza infection than severe SARS-CoV-2 infection. Interestingly, only the concentration of IP-10-correlated between blood and BAL during severe infection. Our results demonstrate inflammatory immune dysregulation in the lower airways during severe viral pneumonia that is distinct from lower airway responses seen in human patients with symptomatic, but not severe, illness and suggest that measurement of blood IP-10 concentration may predict this unique dysregulation.


Subject(s)
COVID-19/immunology , Influenza A virus/physiology , Pneumonia, Viral/immunology , Respiratory System/immunology , SARS-CoV-2/physiology , Adult , Aged , Blood Proteins/metabolism , Bronchoalveolar Lavage Fluid/immunology , COVID-19/diagnosis , Chemokine CXCL10/metabolism , Cohort Studies , Female , Humans , Inflammation Mediators/metabolism , Influenza, Human/immunology , Male , Middle Aged , Prospective Studies , Respiratory Insufficiency , Severity of Illness Index
18.
J Heart Lung Transplant ; 40(10): 1212-1222, 2021 10.
Article in English | MEDLINE | ID: mdl-34353713

ABSTRACT

BACKGROUND: Mechanical ventilation immediately after lung transplantation may impact the development of primary graft dysfunction (PGD), particularly in cases of donor-recipient size mismatch as ventilation is typically based on recipient rather than donor size. METHODS: We conducted a retrospective cohort study of adult bilateral lung transplant recipients at our center between January 2010 and January 2017. We defined donor-based lung protective ventilation (dLPV) as 6 to 8 ml/kg of donor ideal body weight and plateau pressure <30 cm H2O. We calculated the donor-recipient predicted total lung capacity (pTLC) ratio and used logistic regression to examine relationships between pTLC ratio, dLPV and PGD grade 3 at 48 to 72 hours. We used Cox proportional hazards modelling to examine the relationship between pTLC ratio, dLPV and 1-year survival. RESULTS: The cohort included 373 recipients; 24 (6.4%) developed PGD grade 3 at 48 to 72 hours, and 213 (57.3%) received dLPV. Mean pTLC ratio was 1.04 ± 0.18. dLPV was associated with significantly lower risks of PGD grade 3 (OR = 0.44; 95% CI: 0.29-0.68, p < 0.001) and 1-year mortality (HR = 0.49; 95% CI: 0.29-0.8, p = 0.018). There was a significant association between pTLC ratio and the risk of PGD grade 3, but this was attenuated by the use of dLPV. CONCLUSIONS: dLPV is associated with decreased risk of PGD grade 3 at 48 to 72 hours and decreased 1-year mortality. Additionally, dLPV attenuates the association between pTLC and both PGD grade 3 and 1-year mortality. Donor-based ventilation strategies may help to mitigate the risk of PGD and other adverse outcomes associated with size mismatch after lung transplantation.


Subject(s)
Lung Diseases/surgery , Lung Transplantation/adverse effects , Primary Graft Dysfunction/epidemiology , Respiration, Artificial , Aged , Body Weight , Female , Humans , Logistic Models , Lung Diseases/diagnosis , Lung Diseases/mortality , Male , Middle Aged , Organ Size , Primary Graft Dysfunction/diagnosis , Proportional Hazards Models , Retrospective Studies , Survival Rate , Time Factors , Total Lung Capacity
19.
Crit Care Explor ; 3(2): e0343, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33554125

ABSTRACT

To describe the infectious complications and interleukin-6 trajectories in mechanically ventilated patients with coronavirus disease 2019. DESIGN: Retrospective cohort study. SETTING: ICUs at Washington University-Barnes Jewish Hospital in St. Louis, MO. PARTICIPANTS: All consecutive patients admitted to the medical ICU and requiring mechanical ventilation from March 12, 2020, to April 21, 2020, were included. INTERVENTIONS: Tocilizumab, an interleukin-6 receptor blocker, was prescribed at the discretion of the treating physicians to patients with a clinical picture compatible with cytokine release syndrome. MEASUREMENTS: All the patients were followed to death or hospital discharge. Demographic and laboratory data were collected retrospectively from the electronic medical record. Interleukin-6 levels were measured at days 0, 3, 7, 14, and 21. Infections were divided into culture positive and culture negative (clinically suspected and treated). The main outcomes were infectious complications and interleukin-6 levels at different points in time. RESULTS: Forty-three patients with respiratory failure secondary to coronavirus disease 2019 were on mechanical ventilation during the study period. Twenty-seven (68%) were male, and 31 (72.1%) were African-American. Median Charlson score was 2 (interquartile range, 0-4). Median Pao2/Fio2 was 171.5 (122-221) on the day of mechanical ventilation initiation, and 13 patients (30.2%) required vasopressors. C-reactive protein was 142.7 (97.7-213.7), d-dimer 1,621 (559-13,434), and Acute Physiology and Chronic Health Evaluation-II 11 (9-15). Interleukin-6 levels at admission were 61 pg/mL (interquartile range, 28.6-439 pg/mL). Patients treated with tocilizumab had higher levels of interleukin-6 at each measurement (days 0, 3, 7, 14, and 21) compared with patients receiving standard of care. Both groups reached peak interleukin-6 levels at day 7. Administration of tocilizumab was associated with a trend toward increased risk of infection. CONCLUSIONS: Interleukin-6 levels peak at day 7 in patients with severe coronavirus disease 2019 pneumonia requiring mechanical ventilation and follows a similar trajectory in patients with coronavirus disease 2019 pneumonia requiring mechanical ventilation irrespective of treatment with interleukin-6R blockers. Interleukin-6 levels continued to rise in nonsurvivors, in comparison with survivors, where the rise in interleukin-6 levels was followed by a decline.

20.
Am J Transplant ; 21(9): 3101-3111, 2021 09.
Article in English | MEDLINE | ID: mdl-33638937

ABSTRACT

The new lung allocation policy has led to an increase in distant donors and consequently enhanced logistical burden of procuring organs. Though early single-center studies noted similar outcomes between same-team transplantation (ST, procuring team from transplanting center) and different-team transplantation (DT, procuring team from different center), the efficacy of DT in the contemporary era remains unclear. In this study, we evaluated the trend of DT, rate of transplanting both donor lungs, 1-year graft survival, and risk of Grade 3 primary graft dysfunction (PGD) using the Scientific Registry of Transplant Recipient (SRTR) database from 2006 to 2018. A total of 21619 patients (DT 2085, 9.7%) with 19837 donors were included. Utilization of DT decreased from 15.9% in 2006 to 8.5% in 2018. Proportions of two-lung donors were similar between the groups, and DT had similar 1-year graft survival as ST for both double (DT, HR 1.108, 95% CI 0.894-1.374) and single lung transplants (DT, HR 1.094, 95% CI 0.931-1.286). Risk of Grade 3 PGD was also similar between ST and DT. Given our results, expanding DT may be a feasible option for improving lung procurement efficiency in the current era, particularly in light of the COVID-19 pandemic.


Subject(s)
Health Policy , Lung Transplantation , Resource Allocation , Tissue and Organ Procurement , COVID-19 , Graft Survival , Humans , Lung , Pandemics , Tissue Donors
SELECTION OF CITATIONS
SEARCH DETAIL
...